JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

TGF-beta1 stimulates HO-1 via the p38 mitogen-activated protein kinase in A549 pulmonary epithelial cells.

In lung injury and progressive lung diseases, the multifunctional cytokine transforming growth factor-beta1 (TGF-beta1) modulates inflammatory responses and wound repair. Heme oxygenase-1 (HO-1) is a stress-inducible protein that has been demonstrated to confer cytoprotection against oxidative injury and provide a vital function in maintaining tissue homeostasis. Here we report that TGF-beta1 is a potent inducer of HO-1 and examined the signaling pathway by which TGF-beta1 regulates HO-1 expression in human lung epithelial cells (A549). TGF-beta1 (1-5 ng/ml) treatment resulted in a marked time-dependent induction of HO-1 mRNA in A549 cells, followed by corresponding increases in HO-1 protein and HO enzymatic activity. Actinomycin D and cycloheximide inhibited TGF-beta1-responsive HO-1 mRNA expression, indicating a requirement for transcription and de novo protein synthesis. Furthermore, TGF-beta1 rapidly activated the p38 mitogen-activated protein kinase (p38 MAPK) pathway in A549 cells. A chemical inhibitor of p38 MAPK (SB-203580) abolished TGF-beta1-inducible HO-1 mRNA expression. Both SB-203580 and expression of a dominant-negative mutant of p38 MAPK inhibited TGF-beta1-induced ho-1 gene activation, as assayed by luciferase activity of an ho-1 enhancer/luciferase fusion construct (pMHO1luc-33+SX2). These studies demonstrate the critical intermediacy of the p38 MAPK pathway in the regulation of HO-1 expression by TGF-beta1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app