Add like
Add dislike
Add to saved papers

Ionic mechanisms of acquired QT prolongation and torsades de pointes in rabbits with chronic complete atrioventricular block.

Circulation 2002 October 9
BACKGROUND: The ionic basis of acquired QT prolongation and torsade de pointes (TdP) unrelated to drugs is not fully understood.

METHODS AND RESULTS: We created a rabbit model with chronic complete atrioventricular block (AVB) (n=34), which showed prominent QT prolongation (by 120%), high incidence of spontaneous TdP (71%), and cardiac hypertrophy. Patch-clamp experiments were performed in left ventricular myocytes from 9 rabbits (8 with TdP, 1 without TdP) at approximately 21 days of AVB and from 8 sham-operated controls with sinus rhythm. Action potential duration was prolonged in AVB myocytes compared with control (+61% at 0.5 Hz, +21% at 3 Hz). Both rapidly and slowly activating components of the delayed rectifier K(+) current (I(Kr) and I(Ks)) in AVB myocytes were significantly smaller than in control by 50% and 55%, respectively. There was no significant difference in Ca(2+)-independent transient outward current (I(to1)). L-type Ca(2+) current (I(Ca,L)) in control and AVB myocytes was similar in peak amplitude, but the half voltage for activation was shifted to the negative direction (5.9 mV) in AVB myocytes. Voltage dependence of I(Ca,L) inactivation was not different in control and AVB myocytes. The inward rectifier K(+) current (I(K1)) significantly increased in AVB myocytes compared with control.

CONCLUSIONS: In the rabbit, chronic AVB leads to prominent QT prolongation and high incidence of spontaneous TdP. Downregulation of both I(Kr) and I(Ks) in association with altered I(Ca,L) activation kinetics may underlie the arrhythmogenic ventricular remodeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app