CLINICAL TRIAL
JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Supplementation with conjugated linoleic acid causes isomer-dependent oxidative stress and elevated C-reactive protein: a potential link to fatty acid-induced insulin resistance.

Circulation 2002 October 9
BACKGROUND: Conjugated linoleic acids (CLAs), a group of fatty acids shown to have beneficial effects in animals, are also used as weight loss supplements. Recently, we reported that the t10c12 CLA-isomer caused insulin resistance in abdominally obese men via unknown mechanisms. The aim of the present study was to examine whether CLA has isomer-specific effects on oxidative stress or inflammatory biomarkers and to investigate the relationship between these factors and induced insulin resistance.

METHODS AND RESULTS: In a double-blind placebo-controlled trial, 60 men with metabolic syndrome were randomized to one of 3 groups receiving t10c12 CLA, a CLA mixture, or placebo for 12 weeks. Insulin sensitivity (euglycemic clamp), serum lipids, in vivo lipid peroxidation (determined as urinary 8-iso-PGF(2alpha) [F2-isoprostanes]), 15-ketodihydro PGF(2alpha), plasma vitamin E, plasma C-reactive protein, tumor necrosis factor-alpha, and interleukin-6 were assessed before and after treatment. Supplementation with t10c12 CLA markedly increased 8-iso-PGF(2alpha) (578%) and C-reactive protein (110%) compared with placebo (P<0.0001 and P<0.01, respectively) and independent of changes in hyperglycemia or dyslipidemia. The increases in 8-iso-PGF(2alpha), but not in C-reactive protein, were significantly and independently related to aggravated insulin resistance. Oxidative stress was related to increased vitamin E levels, suggesting a compensatory mechanism.

CONCLUSIONS: t10c12 CLA supplementation increases oxidative stress and inflammatory biomarkers in obese men. The oxidative stress seems closely related to induced insulin resistance, suggesting a link between the fatty acid-induced lipid peroxidation seen in the present study and insulin resistance. These unfavorable effects of t10c12 CLA might be of clinical importance with regard to cardiovascular disease, in consideration of the widespread use of dietary supplements containing this fatty acid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app