Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Overexpression of Parkinson's disease-associated alpha-synucleinA53T by recombinant adeno-associated virus in mice does not increase the vulnerability of dopaminergic neurons to MPTP.

Mutations in the alpha-synuclein gene are linked to a rare dominant form of familial Parkinson's disease, and alpha-synuclein is aggregated in Lewy bodies of both sporadic and dominant Parkinson's disease. It has been proposed that mutated alpha-synuclein causes dopaminergic neuron loss by enhancing the vulnerability of these neurons to a variety of insults, including oxidative stress, apoptotic stimuli, and selective dopaminergic neurotoxins, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). To test this hypothesis in vivo, we overexpressed human alpha-synuclein(A53T) in the substantia nigra of normal and MPTP-treated mice by rAAV-mediated gene transfer. Determination of dopaminergic neuron survival, striatal tyrosine hydroxylase fiber density, and striatal content of dopamine and its metabolites in rAAV-injected and uninjected hemispheres demonstrated that alpha-synuclein(A53T) does not increase the susceptibility of dopaminergic neurons to MPTP. Our findings argue against a direct detrimental role for (mutant) alpha-synuclein in oxidative stress and/or apoptotic pathways triggered by MPTP, but do not rule out the possibility that alpha-synuclein aggregation in neurons exposed to oxidative stress for long periods of time may be neurotoxic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app