JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

SEP-1 - a subtilisin-like serine endopeptidase from germinated seeds of Hordeum vulgare L. cv. Morex.

Planta 2002 October
Proteolysis is crucial for all living cells. It regulates protein processing, intracellular protein levels and removes abnormal or damaged proteins from the cell, working as a cellular housekeeper. By means of proteolysis, cells can control the short-lived regulatory proteins that affect processes such as signal transduction and reception, transcription, division and cellular growth. Proteolysis also furnishes amino acids for the de novo synthesis of proteins. In germinating seeds, its main role is to degrade storage proteins into small peptides and amino acids that can be used by the embryo during autotrophic growth. We have isolated and purified a serine endopeptidase, one of the many proteolytic enzymes that occur in germinated barley seeds (green malt), using chromatofocusing and DEAE-, CM-, and size-exclusion chromatographies. The enzyme, named SEP-1, has a molecular weight of 70 kDa, as estimated by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size-exclusion chromatography. SEP-1 was detected and measured by its ability to digest gelatin in gels and to hydrolyze the synthetic substrate N-succinyl Ala-Ala-Pro-Leu p-nitroanilide. The hydrolysis of the synthetic substrate was optimal at pH 6.5 and 50 degrees C with a K(m) of 2.6 mM. The enzyme was inhibited by phenylmethylsulfonyl fluoride and p-amidinophenyl methanesulfonyl fluoride but not by any other class-specific inhibitor, suggesting it was a serine endopeptidase. Its amino acid sequence was similar to those of other plant subtilisin-like serine peptidases (EC 3.4.21), especially to the cucumisin-like group. SEP-1 was present in resting seeds, and its activity increased during germination in all of the malted barley tissues except for the endosperm, where it never occurred, suggesting that the enzyme is not likely involved in storage-protein degradation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app