COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Fabrication and use of a transient contractional flow device to quantify the sensitivity of mammalian and insect cells to hydrodynamic forces.

A microfluidic device was fabricated via photolithographic techniques which can create transient elongational and shear forces ranging over three orders of magnitude while still maintaining laminar flow conditions. The contractional fluid flow inside the microfluidic device was simulated with FLUENT (a computational fluid dynamics computer program) and the local deformation forces were characterized with the scalar quantity, local energy dissipation rate. The sensitivities of four cell lines (CHO, HB-24, Sf-9, and MCF7) were tested in the device. The results indicate that all four cell lines are able to withstand relatively intense energy dissipation rates (up to 10(4)-10(5) kW/m(3)), which is orders of magnitude higher than the maximum local energy dissipation rates generated by impellers in bioreactors, but comparable to that associated with small bursting bubbles. While the concept that suspended animal cells are relatively robust with respect to purely hydrodynamic forces in bioprocess equipment is well known, these results quantitatively demonstrate these observations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app