In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fast-twitch skeletal muscles of dystrophic mouse pups are resistant to injury from acute mechanical stress.

Loss of the dystrophin-glycoprotein complex from muscle sarcolemma in Duchenne's muscular dystrophy (DMD) renders the membrane susceptible to mechanical injury, leaky to Ca(2+), and disrupts signaling, but the precise mechanism(s) leading to the onset of DMD remain unclear. To assess the role of mechanical injury in the onset of DMD, extensor digitorum longus (EDL) muscles from C57 (control), mdx, and mdx-utrophin-deficient [mdx:utrn(-/-); dystrophic] pups aged 9-12 days were subjected to an acute stretch-injury or no-stretch protocol in vitro. Before the stretches, isometric stress was attenuated for mdx:utrn(-/-) compared with control muscles at all stimulation frequencies (P < 0.05). During the stretches, EDL muscles for each genotype demonstrated similar mean stiffness values. After the stretches, isometric stress during a tetanus was decreased significantly for both mdx and mdx:utrn(-/-) muscles compared with control muscles (P < 0.05). Membrane injury assessed by uptake of procion orange dye was greater for dystrophic compared with control EDL (P < 0.05), but, within each genotype, the percentage of total cells taking up dye was not different for the no-stretch vs. stretch condition. These data suggest that the sarcolemma of maturing dystrophic EDL muscles are resistant to acute mechanical injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app