JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of bradykinin, TGF-beta1, IL-1beta, and hypoxia on COX-2 expression in pulmonary artery smooth muscle cells.

Prostanoids are major regulators of smooth muscle function that are generated by cyclooxygenase (COX). Here we hypothesized that cytokines and mediators that regulate the pulmonary circulation would alter COX expression and prostanoid generation in pulmonary artery smooth muscle cells. Bradykinin, transforming growth factor-beta1 (TGF-beta1), and interleukin-1beta (IL-1beta) increased inducible COX-2 expression and prostaglandin E(2) (PGE(2)) release. Transfection studies using a COX-2 promoter construct demonstrated that all three agents acted transcriptionally. Constitutive COX-1 protein expression was unchanged. The COX inhibitor indomethacin, the COX-2 inhibitor NS-398, the protein synthesis inhibitor cycloheximide, and the glucocorticoid dexamethasone abrogated the increased PGE(2) levels. Dexamethasone and cycloheximide prevented COX-2 induction. Hypoxia (3% O(2)-5% CO(2)-92% N(2)) for 24 h selectively augmented TGF-beta1-stimulated PGE(2) production and COX-2 induction but had no effect alone. Prolonged hypoxic culture alone for 48 and 72 h enhanced COX-2 induction and increased PGE(2). These studies show that a number of stimuli are capable of inducing COX-2 in pulmonary artery smooth muscle cells. The interaction between hypoxia and TGF-beta1 may be particularly relevant to pulmonary hypertension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app