Add like
Add dislike
Add to saved papers

Treatment of circulating CD34(+) cells with SDF-1alpha or anti-CXCR4 antibody enhances migration and NOD/SCID repopulating potential.

OBJECTIVE: Stromal cell-derived factor-1alpha (SDF-1alpha) has been implicated in homing and engraftment of primitive hematopoietic progenitor cells (HPC) in studies demonstrating reduced NOD/SCID repopulating potential of HPC exposed to supra-physiologic concentrations of SDF-1alpha or anti-CXCR4. Outcome of CXCR4 signaling in some cells has been shown to be dependent on the concentration of SDF-1alpha. We aimed to determine whether similar concentration-dependent responses to CXCR4 signaling are present in CD34(+)cells.

MATERIALS AND METHODS: Human peripheral blood (PB), mobilized PB (MPB), or bone marrow (BM) CD34(+) cells were incubated for 30 minutes with different concentrations of SDF-1alpha or anti-CXCR4, washed, then assessed for in vitro hematopoietic potential, migration, and NOD/SCID repopulating potential.

RESULTS: Exposure of MPB or PB CD34(+) cells to 100 ng/mL SDF-1alpha increased tyrosine phosphorylation without subsequent proliferation or apoptosis. Spontaneous and SDF-1alpha-directed migration also increased in pretreated cells, despite previous exposure to SDF-1alpha. Cells exposed to 1 microg anti-CXCR4/10(6) cells displayed similar increases in activation and migration as cells exposed to SDF-1alpha, demonstrating the ability of anti-CXCR4 to activate the CXCR4 receptor. Interestingly, chimerism in NOD/SCID mice transplanted with MPB CD34(+) cells pretreated with SDF-1alpha or anti-CXCR4 was increased, while exposure of these cells to 10- to 100-fold higher concentrations of these proteins inhibited in vitro migration and NOD/SCID repopulating potential. Migration and NOD/SCID repopulating potential of BM CD34(+) cells remained unchanged after treatment with either protein.

CONCLUSIONS: These results illustrate the ability of SDF-1alpha and anti-CXCR4 to augment repopulating potential of CD34(+) cells, and suggest that HPC function can be favorably modulated through specific CXCR4 signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app