Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The fusome and microtubules enrich Par-1 in the oocyte, where it effects polarization in conjunction with Par-3, BicD, Egl, and dynein.

Current Biology : CB 2002 September 4
After its specification, the Drosophila oocyte undergoes a critical polarization event that involves a reorganization of the microtubules (MT) and relocalization of the determinant Orb within the oocyte. This polarization requires Par-1 kinase and the PDZ-containing Par-3 homolog, Bazooka (Baz). Par-1 has been observed on the fusome, which degenerates before the onset of oocyte polarization. How Par-1 acts to polarize the oocyte has been unclear. Here we show that Par-1 becomes restricted to the oocyte in a MT-dependent fashion after disappearance of the fusome. At the time of polarization, the kinase itself and the determinant BicaudalD (BicD) are relocalized from the anterior to the posterior of the oocyte. Par-1 and BicD are interdependent and require MT and the minus end-directed motor Dynein for their relocalization. We show that baz is required for Par-1 relocalization within the oocyte and that the distributions of Baz and Par-1 in the Drosophila oocyte are complementary and strikingly reminiscent of the two PAR proteins in the C. elegans embryo. We propose that, through the combined actions of the fusome, MT, and Baz, Par-1 is selectively enriched and localized within the oocyte, where, in conjunction with BicD, Egalitarian (Egl), and Dynein, it acts on the MT cytoskeleton to effect polarization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app