Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Overexpression of endothelial nitric oxide synthase attenuates cardiac hypertrophy induced by chronic isoproterenol infusion.

Endogenous nitric oxide (NO) inhibits the contractile response to beta-adrenergic stimulation, but its effect on cardiac hypertrophy mediated by beta-adrenoceptors remains unclear. The present study was designed to determine whether overproduction of endothelial NO synthase (eNOS) could inhibit cardiac hypertrophy induced by chronic isoproterenol (ISO) infusion (30mg/kg per day) using eNOS overexpressing (eNOS-Tg) mice and wild-type (WT) mice. In a separate group, WT mice were treated with ISO and hydralazine to decrease blood pressure to the same levels in eNOS-Tg mice. The eNOS expression, NOS activity, and cGMP levels in the heart were remarkably higher in eNOS-Tg mice than in WT mice. ISO increased both heart weight and the heart/body weight ratio, which were significantly attenuated in eNOS-Tg mice compared with WT or hydralazine-treated WT mice. Histological examination revealed that the extent of fibrosis was not significantly different among the 3 groups, and that the increase in myocyte size was more than 10% lower in eNOS-Tg than in the other groups. In addition, up-regulated expression of atrial natriuretic peptide mRNA associated with cardiac hypertrophy was significantly inhibited in eNOS-Tg mice during ISO infusion. These results indicate that endogenous NO might act as a negative modulator for the hypertrophic response to beta-adrenergic stimulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app