IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cbl-directed monoubiquitination of CIN85 is involved in regulation of ligand-induced degradation of EGF receptors.

Addition of ubiquitin or ubiquitin chains to target proteins leads to their mono- or polyubiquitination, respectively. Whereas polyubiquitination targets proteins for degradation, monoubiquitination is thought to regulate receptor internalization and endosomal sorting. Cbl proteins are major ubiquitin ligases that promote ligand-dependent polyubiquitination and degradation of receptor tyrosine kinases. They also recruit CIN85-endophilin in the complex with activated receptors, thus controlling receptor endocytosis. Here we show that the adaptor protein CIN85 and its homologue CMS are monoubiquitinated by Cbl/Cbl-b after epidermal growth factor (EGF) stimulation. Monoubiquitination of CIN85 required direct interactions between CIN85 and Cbl, the intact RING finger domain of Cbl and a ubiquitin acceptor site present in the carboxyl terminus of CIN85. Cbl-b and monoubiquitinated CIN85 are found in the complex with polyubiquitinated EGF receptors during prolonged EGF stimulation and are degraded together in the lysosome. Dominant interfering forms of CIN85, which have been shown previously to delay EGF receptor degradation, were also impaired in their monoubiquitination. Thus, our data demonstrate that Cbl/Cbl-b can mediate polyubiquitination of cargo as well as monoubiquitination of CIN85 to control endosomal sorting and degradation of receptor tyrosine kinases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app