JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Effects of eosinophils on mast cells: a new pathway for the perpetuation of allergic inflammation.

Molecular Immunology 2002 September
Mast cells have a clear-cut pathologic role in allergy, participating in a number of chronic inflammatory conditions, in helmintic parasitosis, and in some solid tumor reactions, but also in physiological situations, such as wound healing and innate immunity. Mast cells release a large number of proinflammatory, immunoregulatory, and tissue regulatory mediators after activation induced by either IgE-dependent or IgE-independent mechanisms. While much information has been gathered on the immunological mast cell activation both in rodent and human systems, only minimal knowledge exists on the non-immunological activation especially in human mast cells. Mast cell IgE-independent activation occurs through G(i3alpha) which has been identified as the pertussis toxin (Ptx)-sensitive heterotrimeric G protein that interacts with cationic secretagogues inducing PLC-independent mast cell exocytosis. Mast cell IgE-independent activation in allergy probably occurs when mast cells encounter eosinophils, the main inflammatory cells of the allergic reactions that persist throughout the late phase and when the inflammatory condition becomes chronic. This review summarizes regarding the influence of eosinophils on mast cell activation, thus demonstrating that IgE-independent activation has a relevant role in pathophysiological processes as well as in mast cell IgE-dependent activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app