JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Adeno-associated virus vector-mediated minidystrophin gene therapy improves dystrophic muscle contractile function in mdx mice.

Human Gene Therapy 2002 August 11
Duchenne muscular dystrophy (DMD) is the most common disabling and lethal genetic muscle disorder, afflicting 1 of every 3500 males. Patients with DMD experience progressive muscle degeneration and weakness and succumb to respiratory or cardiac failure by their early twenties. No treatment is currently available for DMD. Mutations in the dystrophin gene result in lack of a functional dystrophin protein in striated muscle, which induces instability in the muscle cell membrane leading to persistent muscle injury after contraction. We have previously created novel minidystrophin genes and demonstrated that adeno-associated virus (AAV)-mediated intramuscular delivery of the minigenes effectively ameliorated mdx dystrophic histopathology and led to normal cell membrane integrity for more than 1 year. In this paper, we investigated whether AAV-minidystrophin could also improve mdx muscle contractile function. Two-month-old adult male mdx mice, with established muscular dystrophy, were given a single-dose injection of an AAV-minidystrophin vector in the tibialis anterior (TA) muscle of one leg, with the untreated contralateral leg used as a control. The treated TA muscle showed both (1) a significant increase in isometric force generation and (2) a significant increase in resistance to lengthening activation-induced muscle force decrements. We conclude that AAV-minidystrophin gene treatment is effective in improving mdx muscle contractile function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app