Journal Article
Review
Add like
Add dislike
Add to saved papers

Screening for antisense modulation of dystrophin pre-mRNA splicing.

Most gene therapy approaches to genetic disorders aim to compensate loss-of-function by introducing recombinant cDNA-based minigenes into diseased tissues. The current report represents an ongoing series of studies designed to correct genetic mutations at the post-transcriptional level. This strategy modifies the binding of components of the spliceosome by high affinity hybridisation of small complementary (antisense) RNA oligonucleotides to specific pre-mRNA sequences. These, so-called 'splicomer' reagents are chemically modified to impart bio-stability, and are designed to cause skipping of mutant frame-shifting exon sequences leading to restoration of the reading frame and an internally deleted but partially functional gene product. For instance, Duchenne muscular dystrophy is generally caused by frame-shift mutations in the dystrophin gene, whereas in-frame deletions of up to 50% of the central portion of the gene cause Becker muscular dystrophy, a much milder myopathy, which in some cases can remain asymptomatic to old age. In the mdx mouse model of Duchenne muscular dystrophy, a mutation in exon 23 of the dystrophin gene creates a stop codon and leads to a dystrophin-deficient myopathy in striated muscle. In previous studies, we have demonstrated that forced skipping of this mutant exon by treatment of mdx muscle cells with splicomer oligonucleotides can generate in-frame dystrophin transcripts and restore dystrophin expression. Here, we report the results of an optimisation of splicomer sequence design by the use of both high-throughput arrays and biological screens. This has resulted in specific and, importantly, exclusive skipping of the targeted exon in greater than 60% of dystrophin mRNA, leading to the de novo synthesis and localisation of dystrophin protein in cultured mdx muscle cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app