COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Anti-TGF-beta antibody blocks enamel matrix derivative-induced upregulation of p21WAF1/cip1 and prevents its inhibition of human oral epithelial cell proliferation.

We have previously demonstrated that porcine enamel matrix derivative (EMD) contains TGF-beta 1 (or a TGF-beta-like substance), and that EMD rapidly translocates smad2, which is an effector of the TGF-beta signaling pathway, into the nucleus and modulates the proliferation of both human gingival fibroblastic and oral epithelial cells in a cell type-specific manner. To investigate the involvement of TGF-beta in the growth modulatory action of EMD, two approaches have been used in the present study: i) a neutralizing anti-TGF-beta antibody to block EMD action, and ii) authentic porcine TGF-beta 1 to compare with EMD. Both in epithelial and fibroblastic cells, TGF-beta 1 closely mimicked EMD in nuclear accumulation of smad2, phosphorylation of MAP kinase family members, and consequent cell type-specific growth modulation. Anti-TGF-beta antibody, at levels which completely blocked TGF-beta 1-induced smad2 translocation, strongly blocked EMD-induced smad2 translocation. This antibody also blocked other actions of EMD in epithelial cells, i.e. p38-MAP kinase (p38-K) phosphorylation, p21WAF1/cip1 expression, and inhibition of DNA synthesis. In support of our previous proposal, these data suggest that TGF-beta 1 (or a TGF-beta-like substance), which is delivered as a principal bioactive factor in EMD, inhibits epithelial cell proliferation probably by a smad2-mediated, p21WAF1/cip1-dependent mechanism. However, the same neutralizing antibody failed to convincingly block EMD-induced fibroblastic proliferation, which suggests that EMD may contain additional unidentified mitogenic factor(s), which act in combination with TGF-beta to fully stimulate fibroblastic proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app