JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Chemotherapy targeting methylthioadenosine phosphorylase (MTAP) deficiency in adult T cell leukemia (ATL).

Leukemia 2002 September
Methylthioadenosine phosphorylase (MTAP) is an important enzyme used for the salvage of adenine and methionine. Cells lacking this enzyme are expected to be sensitive to purine synthesis inhibitors and/or methionine starvation. We reported previously that the MTAP gene is deleted in adult T cell leukemia (ATL) cells. In the present study, we expanded our series and used a real-time quantitative PCR assay for accurate diagnosis of the deletion and nine of 65 primary ATL samples (13.8%) were MTAP negative. In spite of this low incidence, ATL cells showed significantly higher sensitivity to L-alanosine, an inhibitor of de novo adenosine monophosphate (AMP) synthesis, than normal lymphocytes, suggesting that the MTAP gene is inactivated not only by deletion but also by other mechanisms. Indeed, a real-time quantitative RT-PCR assay disclosed that primary ATL cells had significantly lower MTAP mRNA expression than normal lymphocytes. Since MTAP-negative ATL cell lines also showed much higher sensitivity to L-alanosine than MTAP-positive ATL cell lines, we used these cell lines to investigate whether it is possible to develop selective therapy targeting MTAP deficiency. A substrate of MTAP, methylthioadenosine (MTA) or its substitutes rescued concanavalin A (Con A)-activated normal lymphocyte proliferation from L-alanosine toxicity. All the compounds except 5'-deoxyadenosine, however, also caused the undesirable rescue of MTAP-negative ATL cell lines. 5'-Deoxyadenosine had the desired ability to rescue hematopoietic progenitor cells without rescuing ATL cell lines. These results support the rationale for a chemotherapy regimen of L-alanosine combined with 5'-deoxyadenosine rescue in MTAP-deficient ATL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app