Add like
Add dislike
Add to saved papers

Sodium channel-blocking agents are not of benefit to rats with kaolin-induced hydrocephalus.

Neurosurgery 2002 August
OBJECTIVE: Hydrocephalus causes damage to periventricular white matter at least in part through chronic ischemia. The sodium channel-blocking agents mexiletine and riluzole have been shown to be of some protective value in various models of neurological injury. We hypothesized that these agents would ameliorate the effects of experimental childhood-onset hydrocephalus.

METHODS: Hydrocephalus was induced in 4-week-old rats by injection of kaolin into the cisterna magna. Tests of cognitive and motor function were performed on a weekly basis. In a blinded and randomized manner, mexiletine (0.7, 7, or 42 mg/kg/d) or riluzole (1.4 or 13.6 mg/kg/d) was administered by osmotic minipump for 2 weeks, beginning 2 weeks after induction of hydrocephalus. The brains were then subjected to histopathological and biochemical analyses.

RESULTS: Compared with untreated hydrocephalic rats, neither mexiletine nor riluzole was associated with a protective effect on behavioral, structural, or biochemical abnormalities.

CONCLUSION: Protection of hydrocephalic brains through pharmacological sodium channel blockade is probably an approach not worth pursuing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app