JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha.

The transcriptional coactivator PPARgamma coactivator-1alpha (PGC-1alpha) has been characterized as a broad regulator of cellular energy metabolism. Although PGC-1alpha functions through many transcription factors, the PGC-1alpha partners identified to date are unlikely to account for all of its biologic actions. The orphan nuclear receptor estrogen-related receptor alpha (ERRalpha) was identified in a yeast two-hybrid screen of a cardiac cDNA library as a novel PGC-1alpha-binding protein. ERRalpha was implicated previously in regulating the gene encoding medium-chain acyl-CoA dehydrogenase (MCAD), which catalyzes the initial step in mitochondrial fatty acid oxidation. The cardiac perinatal expression pattern of ERRalpha paralleled that of PGC-1alpha and MCAD. Adenoviral-mediated ERRalpha overexpression in primary neonatal cardiac mycoytes induced endogenous MCAD expression. Furthermore, PGC-1alpha enhanced the transactivation of reporter plasmids containing an estrogen response element or the MCAD gene promoter by ERRalpha and the related isoform ERRgamma. In vitro binding experiments demonstrated that ERRalpha interacts with PGC-1alpha via its activation function-2 homology region. Mutagenesis studies revealed that the LXXLL motif at amino acid position 142-146 of PGC-1alpha (L2), necessary for PGC-1alpha interactions with other nuclear receptors, is not required for the PGC-1alpha.ERRalpha interaction. Rather, ERRalpha binds PGC-1alpha primarily through a Leu-rich motif at amino acids 209-213 (Leu-3) and utilizes additional LXXLL-containing domains as accessory binding sites. Thus, the PGC-1alpha.ERRalpha interaction is distinct from that of other nuclear receptor PGC-1alpha partners, including PPARalpha, hepatocyte nuclear factor-4alpha, and estrogen receptor alpha. These results identify ERRalpha and ERRgamma as novel PGC-1alpha interacting proteins, implicate ERR isoforms in the regulation of mitochondrial energy metabolism, and suggest a potential mechanism whereby PGC-1alpha selectively binds transcription factor partners.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app