RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Evaluation of force-sensing resistors for gait event detection to trigger electrical stimulation to improve walking in the child with cerebral palsy.

Force-sensing resistors (FSRs) were used to detect the transitions between five main phases of gait for the control of electrical stimulation (ES) while walking with seven children with spastic diplegia, cerebral palsy. The FSR positions within each child's insoles were customized based on plantar pressure profiles determined using a pressure-sensitive membrane array (Tekscan Inc., Boston, MA). The FSRs were placed in the insoles so that pressure transitions coincided with an ipsilateral or contralateral gait event. The transitions between the following gait phases were determined: loading response, mid- and terminal stance, and pre- and initial swing. Following several months of walking on a regular basis with FSR-triggered intramuscular ES to the hip and knee extensors, hip abductors, and ankle dorsi and plantar flexors, the accuracy and reliability of the FSRs to detect gait phase transitions were evaluated. Accuracy was evaluated with four of the subjects by synchronizing the output of the FSR detection scheme with a VICON (Oxford Metrics, U.K.) motion analysis system, which was used as the gait event reference. While mean differences between each FSR-detected gait event and that of the standard (VICON) ranged from +35 ms (indicating that the FSR detection scheme recognized the event before it actually happened) to -55 ms (indicating that the FSR scheme recognized the event after it occurred), the difference data was widely distributed, which appeared to be due in part to both intrasubject (step-to-step) and intersubject variability. Terminal stance exhibited the largest mean difference and standard deviation, while initial swing exhibited the smallest deviation and preswing the smallest mean difference. To determine step-to-step reliability, all seven children walked on a level walkway for at least 50 steps. Of 642 steps, there were no detection errors in 94.5% of the steps. Of the steps that contained a detection error, 80% were due to the failure of the FSR signal to reach the programmed threshold level during the transition to loading response. Recovery from an error always occurred one to three steps later.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app