JOURNAL ARTICLE

Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray

Motoaki Seki, Mari Narusaka, Junko Ishida, Tokihiko Nanjo, Miki Fujita, Youko Oono, Asako Kamiya, Maiko Nakajima, Akiko Enju, Tetsuya Sakurai, Masakazu Satou, Kenji Akiyama, Teruaki Taji, Kazuko Yamaguchi-Shinozaki, Piero Carninci, Jun Kawai, Yoshihide Hayashizaki, Kazuo Shinozaki
Plant Journal 2002, 31 (3): 279-92
12164808
Full-length cDNAs are essential for functional analysis of plant genes in the post-sequencing era of the Arabidopsis genome. Recently, cDNA microarray analysis has been developed for quantitative analysis of global and simultaneous analysis of expression profiles. We have prepared a full-length cDNA microarray containing approximately 7000 independent, full-length cDNA groups to analyse the expression profiles of genes under drought, cold (low temperature) and high-salinity stress conditions over time. The transcripts of 53, 277 and 194 genes increased after cold, drought and high-salinity treatments, respectively, more than fivefold compared with the control genes. We also identified many highly drought-, cold- or high-salinity- stress-inducible genes. However, we observed strong relationships in the expression of these stress-responsive genes based on Venn diagram analysis, and found 22 stress-inducible genes that responded to all three stresses. Several gene groups showing different expression profiles were identified by analysis of their expression patterns during stress-responsive gene induction. The cold-inducible genes were classified into at least two gene groups from their expression profiles. DREB1A was included in a group whose expression peaked at 2 h after cold treatment. Among the drought, cold or high-salinity stress-inducible genes identified, we found 40 transcription factor genes (corresponding to approximately 11% of all stress-inducible genes identified), suggesting that various transcriptional regulatory mechanisms function in the drought, cold or high-salinity stress signal transduction pathways.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
12164808
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"