Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

A new dominant spinocerebellar ataxia linked to chromosome 19q13.4-qter.

BACKGROUND: The autosomal dominant spinocerebellar ataxias (SCAs) are a clinically and genetically heterogeneous group of neurodegenerative disorders. Although molecular genetic studies have so far implicated 16 loci in the etiology of these diseases, approximately 30% of families with SCAs remain unlinked.

OBJECTIVES: To report the location of a gene causing a "pure" autosomal dominant cerebellar ataxia in one family and to describe the clinical phenotype.

PATIENTS: We have identified a 4-generation American family of English and Dutch ethnicity with a pure cerebellar ataxia displaying an autosomal dominant pattern of inheritance. The disease typically has its onset in the third and fourth decades of life, shows no evidence of anticipation, progresses slowly, and does not appear to decrease life expectancy. Clinical DNA testing excluded SCA1, 2, 3, 6, 7, and 8.

METHODS: A genome-wide linkage analysis at a 10 centimorgan (cM) level was performed with samples from 26 family members (11 affected, 10 clinically unaffected at risk, and 5 spouses).

RESULTS: Assuming 90% penetrance, we found suggestive evidence of linkage to chromosome 19, with a lod score of 2.49 for D19S571. More detailed mapping in this region provided a maximum 2-point lod score of 2.57 at theta = 0 for D19S254 and a maximum multipoint lod score of 4.72 at D19S926. By haplotype construction a 22-cM critical region from D19S601 to the q telomere was defined.

CONCLUSIONS: We have mapped a gene for an autosomal dominant SCA to chromosome 19q13.4-qter in one family. The critical region overlaps with the locus for SCA14, a disease described in a single Japanese family and characterized by axial myoclonus. Myoclonus was not seen in the family we studied, but it remains possible that the 2 disorders are allelic variants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app