Vibration parameter extraction from endoscopic image series of the vocal folds

Michael Döllinger, Ulrich Hoppe, Frank Hettlich, Jörg Lohscheller, Stefan Schuberth, Ulrich Eysholdt
IEEE Transactions on Bio-medical Engineering 2002, 49 (8): 773-81
An approach is given to extract parameters affecting phonation based upon digital high-speed recordings of vocal fold vibrations and a biomechanical model. The main parameters which affect oscillation are vibrating masses, vocal fold tension, and subglottal air pressure. By combining digital high-speed observations with the two-mass-model by Ishizaka and Flanagan (1972) as modified by Steinecke and Herzel (1995), an inversion procedure has been developed which allows the identification and quantization of laryngeal asymmetries. The problem is regarded as an optimization procedure with a nonconvex objective function. For this kind of problem, the choice of appropriate initial values is important. This optimization procedure is based on spectral features of vocal fold movements. The applicability of the inversion procedure is first demonstrated in simulated vocal fold curves. Then, inversion results are presented for a healthy voice and a hoarse voice as a case of functional dysphonia caused by laryngeal asymmetry.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"