Add like
Add dislike
Add to saved papers

Gene optimization is necessary to express a bivalent anti-human anti-T cell immunotoxin in Pichia pastoris.

The bivalent anti-human anti-T cell immunotoxin A-dmDT390-bisFv(G(4)S) was developed for treatment of T cell leukemia, autoimmune diseases, and tolerance induction for transplantation. The multi-domain structure of the bivalent immunotoxin hinders efficient production in Escherichia coli and most eukaryotes are sensitive to the toxin. However, Pichia pastoris has a tolerance to levels of DT (diphtheria toxin) that were previously observed to intoxicate wild type eukaryotic cells, including Saccharomyces cerevisiae. This tolerance has permitted the optimization of the secreted expression of A-dmDT390-bisFv(G(4)S) in P. pastoris under the control of AOX1 (alcohol oxidase 1) promoter. The original DNA sequence of A-dmDT390-bisFv(G(4)S) was not expressed in P. pastoris because of several AT-rich regions, which induce an early termination of transcription. After DNA rebuilding for abolishing AT-rich regions and codon optimization, the immunotoxin could be expressed up to 10mg/L in the shake flask culture. No differences in the expression levels of immunotoxin were observed by using different secretional signal sequences, Mut(s) (methanol utilization slow phenotype) or Mut(+) (methanol utilization plus phenotype) phenotypes. Buffered complex medium (pH 7.0) having 1% casamino acids provided the highest expression in shake flask culture and PMSF (phenylmethylsulfonyl fluoride) in the range of 1 to 3mM further improved the expression level presumably by inhibiting protein degradation. The immunotoxin was purified by DEAE (diethylaminoethyl) Sepharose ion exchange chromatography and Protein L affinity chromatography. The immunotoxin purified from P. pastoris culture was as fully functional as that expressed in a toxin resistant mutant CHO (Chinese hamster ovary) cell line. Our results demonstrate that P. pastoris is an ideal system for expression of toxin-based fusion proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app