JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Expression of kinase suppressor of Ras in the normal adult and embryonic mouse.

Recent studies indicate that kinase suppressor of Ras (KSR)is a scaffold protein for the Ras/Raf/MEK/ERK signaling cascade in mammals. To help determine the in vivo function of KSR, we have examined the tissue-specific distribution of this protein in the embryonic and adult mouse using a rat monoclonal antibody raised against the mouse protein. Western blot analysis indicates that the protein is expressed at highest levels in the adult brain. It is also expressed at low levels in bladder, ovary, testis, and lung, but the protein is not detectable in any other adult tissue. However, reverse transcription-PCR analysis shows that Ksr transcripts are detected in all adult tissues except the liver. A variant containing a differentially spliced exon in the CA4 domain is observed in brain, cerebellum, ovary, and intestine. The protein is also expressed throughout the E6.5 embryo and at high levels in the neuroepithelium of the E10.5 embryo. At this embryonic stage, expression is also detected at lower levels in the limb and tail buds as well as in the myocardium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app