Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Orphanin FQ/nociceptin-mediated desensitization of opioid receptor-like 1 receptor and mu opioid receptors involves protein kinase C: a molecular mechanism for heterologous cross-talk.

Morphine tolerance in vivo is reduced following blockade of the orphanin FQ/nociceptin (OFQ/N)/opioid receptor-like 1 (ORL1) receptor system, suggesting that OFQ/N contributes to the development of morphine tolerance. We previously reported that a 60-min activation of ORL1 receptors natively expressed in BE(2)-C cells desensitized both mu and ORL1 receptor-mediated inhibition of cAMP. Investigating the mechanism(s) of OFQ/N-mediated mu and ORL1 receptor cross-talk, we found that pretreatment with the protein kinase C inhibitor, chelerythrine chloride (1 microM), blocked OFQ/N-mediated homologous desensitization of ORL1 and heterologous desensitization of mu opioid receptors. Furthermore, depletion of PKC by 12-O-tetradecanoylphorbol-13-acetate exposure (48 h, 1 microM) also prevented OFQ/N-mediated mu and ORL1 desensitization. OFQ/N pretreatment resulted in translocation of PKC-alpha, G protein-coupled receptor kinase 2 (GRK2) and GRK3 from the cytosol to the membrane, and this translocation was also blocked by chelerythrine. Reduction of GRK2 and GRK3 levels by antisense, but not sense DNA treatment blocks ORL1 and mu receptor desensitization. This suggests that PKC-alpha is required for GRK2 and GRK3 translocation to the membrane, where GRK can inactivate ORL1 and mu opioid receptors upon rechallenge with the appropriate agonist. Our results demonstrate for the first time the involvement of conventional PKC isozymes in OFQ/N-induced mu-ORL1 cross-talk, and represent a possible mechanism for OFQ/N-induced anti-opioid actions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app