Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MRI measurement of blood-brain barrier permeability following spontaneous reperfusion in the starch microsphere model of ischemia.

Quantification of the acute increases in blood-brain barrier (BBB) permeability that occur subsequent to experimental ischemic injury has been limited to single time-point, invasive methodologies. Although permeability can be qualitatively assessed to visualise regional changes during sequential studies on the same animal using contrast-enhanced magnetic resonance imaging (MRI), quantitative information on the magnitude of change is required to compare barrier function during sequential studies on the same animal or between different animals. Recently, improvements in MRI tracer kinetic models and in MR hardware design mean that an estimate of permeability in vivo can now be obtained with acceptable accuracy and precision. We report here the use of such methods to study acute changes following spontaneous reperfusion in an animal model of ischemia. We have obtained estimates of BBB permeability following spontaneous reperfusion, subsequent to forebrain ischemia by unilateral carotid injection of starch microspheres in the rat. T2*-weighted and diffusion-trace imaging were used to monitor the initial reduction in CBF and the time-course of ischemia, respectively. Following reperfusion, an intraveneous bolus of dimeglumine gadopentetate (Gd-DTPA) and horseradish peroxidase (HRP) was given during a continuous acquisition of T1 maps with a 48 s temporal resolution. Permeability maps were constructed using a 4-compartment model; K(trans), the permeability-surface area product of the capillary walls was estimated to be 9.2 +/- 0.6 x 10(-4) min(-1) in the cortex. Visualisation of the regional extent of HRP extravasation on histological sections following termination of the experiment demonstrated very little correspondence to the region of Gd-DTPA leakage. Quantitative MRI assessment of BBB permeability following ischemia-reperfusion is consistent with published values obtained by invasive methods. Differences between Gd-DTPA-enhancement and HRP may reflect differences in the molecular size of the tracers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app