Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of recombinant human osteogenic protein-1 on the healing of a freshly closed diaphyseal fracture.

Bone 2002 July
Osteogenic protein-1 (OP-1), or bone morphogenetic protein-7, is an osteoinductive morphogen that is involved in embryonic skeletogenesis and in bone repair. In bone defect models without spontaneous healing, local administration of recombinant human OP-1 (rhOP-1) induces complete healing. To investigate the ability of rhOP-1 to accelerate normal physiologic fracture healing, an experimental study was performed. In 40 adult female goats a closed tibial fracture was made, stabilized with an external fixator, and treated as follows: (1) no injection; (2) injection of 1 mg rhOP-1 dissolved in aqueous buffer; (3) injection of collagen matrix; and (4) injection of 1 mg rhOP-1 bound to collagen matrix. The test substances were injected in the fracture gap under fluoroscopic control. At 2 and 4 weeks, fracture healing was evaluated with radiographs, three-dimensional computed tomography (CT), dual-energy X-ray absorptiometry, biomechanical tests, and histology. At 2 weeks, callus diameter, callus volume, and bone mineral content at the fracture site were significantly increased in both rhOP-1 groups compared with the no-injection group. As signs of accelerated callus maturation, bending and torsional stiffness were higher and bony bridging of the fracture gap was observed more often in the group with rhOP-1 dissolved in aqueous buffer than in uninjected fractures. Treatment with rhOP-1 plus collagen matrix did not result in improved biomechanical properties or bony bridging of the fracture gap at 2 weeks. At 4 weeks there were no differences between groups, except for a larger callus volume in the rhOP-1 plus collagen matrix group compared with the control groups. All fractures showed an advanced stage of healing at 4 weeks. In conclusion, the healing of a closed fracture in a goat model can be accelerated by a single local administration of rhOP-1. The use of a carrier material does not seem to be crucial in this application of rhOP-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app