Add like
Add dislike
Add to saved papers

Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids.

It was shown recently that Delta9-tetrahydrocannabinol, like several other drugs eliciting euphoria, stimulates dopaminergic neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens. The aim of the present work was to clarify the mechanism of this stimulatory effect. Our hypothesis was that cannabinoids depress the GABAergic inhibition of dopaminergic neurons in the VTA. Electrophysiological properties of VTA neurons in rat coronal midbrain slices were studied with the patch-clamp technique. GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked by electrical stimulation in the vicinity of the recorded neurons. The amplitude of IPSCs was depressed by the synthetic mixed CB1/CB2 cannabinoid receptor agonist WIN55212-2 (10(-6) and 10(-5) m). The CB1 cannabinoid receptor antagonist SR141716A (10(-6) m) prevented the inhibition produced by WIN55212-2 (10(-5) m). Two observations showed that IPSCs were depressed with a presynaptic mechanism. WIN55212-2 (10(-5) m) did not change the amplitude of miniature IPSCs recorded in the presence of tetrodotoxin. Currents evoked by pressure ejection of muscimol from a pipette were also not changed by WIN55212-2 (10(-5) m). The results indicate that activation of CB1 cannabinoid receptors inhibits GABAergic neurotransmission in the VTA with a presynaptic mechanism. Depression of the GABAergic inhibitory input of dopaminergic neurons would increase their firing rate in vivo. Accordingly, dopamine release in the projection region of VTA neurons, the nucleus accumbens, would also increase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app