JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inhibition of cytokine-induced matrix metalloproteinase 9 expression by peroxisome proliferator-activated receptor alpha agonists is indirect and due to a NO-mediated reduction of mRNA stability.

Rat renal mesangial cells express high levels of matrix metalloproteinase 9 (MMP-9) in response to inflammatory cytokines such as interleukin 1beta (IL-1beta). We tested whether ligands of the peroxisome proliferator-activated receptor (PPARalpha) could influence the cytokine-induced expression of MMP-9. Different PPARalpha agonists dose-dependently inhibited the IL-1beta-triggered increase in gelatinolytic activity mainly by decreasing the MMP-9 steady-state mRNA levels. PPARalpha agonists on their own had no effects on MMP-9 mRNA levels and gelatinolytic activity. Surprisingly, the reduction of MMP-9 mRNA levels by PPARalpha activators contrasted with an amplification of cytokine-mediated MMP-9 gene promoter activity and mRNA expression. The potentiation of MMP-9 promoter activity functionally depends on an upstream peroxisome proliferator-responsive element-like binding site, which displayed an increased DNA binding of a PPARalpha immunopositive complex. In contrast, the IL-1beta-induced DNA-binding of nuclear factor kappaB was significantly impaired by PPARalpha agonists. Most interestingly, in the presence of an inducible nitric-oxide synthase (iNOS) inhibitor, the PPARalpha-mediated suppression switched to a strong amplification of IL-1beta-triggered MMP-9 mRNA expression. Concomitantly, activators of PPARalpha potentiated the cytokine-induced iNOS expression. Using actinomycin D, we found that NO, but not PPARalpha activators, strongly reduced the stability of MMP-9 mRNA. In contrast, the stability of MMP-9 protein was not affected by PPARalpha activators. In summary, our data suggest that the inhibitory effects of PPARalpha agonists on cytokine-induced MMP-9 expression are indirect and primarily due to a superinduction of iNOS with high levels of NO reducing the half-life of MMP-9 mRNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app