JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Detection and identification of bacterial DNA in patients with cirrhosis and culture-negative, nonneutrocytic ascites.

The current pathogenic theory of spontaneous bacterial peritonitis (SBP) in patients with cirrhosis and ascites suggests that repeated episodes of bacterial translocation (BT) from intestinal lumen to mesenteric lymph nodes followed by systemic seeding are the key steps for the final development of infectious events. However, most of the episodes of systemic bacterial circulation remain undetected. Therefore, we investigated the hypothetical presence of bacteria in blood and/or ascitic fluid (AF) from patients with cirrhosis and sterile (culture negative) AF by means of bacterial DNA (bactDNA) detection and identification. Twenty-eight consecutively admitted patients with cirrhosis and presence of AF were included in the study. BactDNA was detected using a polymerase chain reaction (PCR)-based method. The corresponding bacteria were identified by nucleotide sequencing of purified PCR products. BactDNA was detected simultaneously in blood and AF in 9 patients (32.1%). DNA sequencing allowed the identification of Escherichia coli (n = 7) and Staphylococcus aureus (n = 2). In all cases, the similarity between the sequence found in AF and blood indicated that the bactDNA present in both locations originated from a single clone (single translocation event). Child-Pugh score and basic hemodynamic, clinical, endoscopic, and biochemical characteristics were similar among patients with or without the presence of bactDNA. In conclusion, we have detected bactDNA in serum and AF in 32% of all patients studied, and this likely represents single clone episodes of translocation and systemic seeding. E. coli is the most frequently identified bacteria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app