JOURNAL ARTICLE
REVIEW

Training techniques to improve endurance exercise performances

Zuko N Kubukeli, Timothy D Noakes, Steven C Dennis
Sports Medicine 2002, 32 (8): 489-509
12076176
In previously untrained individuals, endurance training improves peak oxygen uptake (VO2peak), increases capillary density of working muscle, raises blood volume and decreases heart rate during exercise at the same absolute intensity. In contrast, sprint training has a greater effect on muscle glyco(geno)lytic capacity than on muscle mitochondrial content. Sprint training invariably raises the activity of one or more of the muscle glyco(geno)lytic or related enzymes and enhances sarcolemmal lactate transport capacity. Some groups have also reported that sprint training transforms muscle fibre types, but these data are conflicting and not supported by any consistent alteration in sarcoplasmic reticulum Ca2+ ATPase activity or muscle physicochemical H+ buffering capacity. While the adaptations to training have been studied extensively in previously sedentary individuals, far less is known about the responses to high-intensity interval training (HIT) in already highly trained athletes. Only one group has systematically studied the reported benefits of HIT before competition. They found that >or=6 HIT sessions, was sufficient to maximally increase peak work rate (W(peak)) values and simulated 40 km time-trial (TT(40)) speeds of competitive cyclists by 4 to 5% and 3.0 to 3.5%, respectively. Maximum 3.0 to 3.5% improvements in TT(40) cycle rides at 75 to 80% of W(peak) after HIT consisting of 4- to 5-minute rides at 80 to 85% of W(peak) supported the idea that athletes should train for competition at exercise intensities specific to their event. The optimum reduction or 'taper' in intense training to recover from exhaustive exercise before a competition is poorly understood. Most studies have shown that 20 to 80% single-step reductions in training volume over 1 to 4 weeks have little effect on exercise performance, and that it is more important to maintain training intensity than training volume. Progressive 30 to 75% reductions in pool training volume over 2 to 4 weeks have been shown to improve swimming performances by 2 to 3%. Equally rapid exponential tapers improved 5 km running times by up to 6%. We found that a 50% single-step reduction in HIT at 70% of W(peak) produced peak approximately 6% improvements in simulated 100 km time-trial performances after 2 weeks. It is possible that the optimum taper depends on the intensity of the athletes' preceding training and their need to recover from exhaustive exercise to compete. How the optimum duration of a taper is influenced by preceding training intensity and percentage reduction in training volume warrants investigation.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
12076176
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"