Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4.

Granulocyte colony-stimulating factor (G-CSF) induced hematopoietic stem cell mobilization is widely used for clinical transplantation; however, the mechanism is poorly understood. We report here that G-CSF induced a reduction of the chemokine stromal cell derived factor 1 (SDF-1) and an increase in its receptor CXCR4 in the bone marrow (BM), whereas their protein expression in the blood was less affected. The gradual decrease of BM SDF-1, due mostly to its degradation by neutrophil elastase, correlated with stem cell mobilization. Elastase inhibition reduced both activities. Human and murine stem cell mobilization was inhibited by neutralizing CXCR4 or SDF-1 antibodies, demonstrating SDF-1 CXCR4 signaling in cell egress. We suggest that manipulation of SDF-1 CXCR4 interactions may be a means with which to control the navigation of progenitors between the BM and blood to improve the outcome of clinical stem cell transplantation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app