Add like
Add dislike
Add to saved papers

Analysis of Cx43alpha1 promoter function in the developing zebrafish embryo.

The Cx43alpha1 gap junctions play an important role in cardiovascular development. Studies using transgenic mouse models have indicated that this involves an essential role for Cx43alpha1 in modulating neural crest cell motility. We previously showed that a 6.8 kb mouse genomic sequence containing the promoter and upstream regulatory sequences of the Cx43alpha1 gene can drive lacZ reporter gene expression in all neural crest cell lineages in the mouse embryo. To obtain further insights into the sequence motifs and regulatory pathways involved in targeting Cx43alpha1 gene expression in neural crest cells, we assayed the activity of the mouse Cx43alpha1 promoter in evolutionarily distantly related zebrafish embryos. For these studies, the 6.8kb Cx43alpha1 genomic sequence and various deletion derivatives were used to generate GFP or lacZ expression vectors. The transcriptional activities of these constructs were analyzed in vivo after microinjection into one- or two- cell stage zebrafish embryos. These studies indicated that the mouse Cx43alpha1 promoter can drive lacZ expression in neural crest cells in the zebrafish embryos. Analysis by whole mount in situ hybridization showed that the endogenous zebrafish Cx43alpha1 gene is expressed maternally and zygotically, and expression is observed in regions where neural crest cells are found. To further elucidate the developmental regulation of Cx43alpha1 gene expression, we screened a zebrafish BAC library and identified a clone containing the entire zebrafish Cx43alpha1 gene and flanking upstream and downstream sequences. The upstrean Cx43alpha1 promoter sequences from zebrafish, mouse, and human were analyzed for evolutionarily conserved DNA motifs. Overall these studies suggest that the sequence motifs and transcriptional regulation involved in the targeting Cx43alpha1 expression to neural crest cells are evolutionarily conserved in zebrafish and mouse embryos.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app