Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Activation of p38 alpha MAPK enhances collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by mRNA stabilization.

Here, we have examined the role of distinct MAPK pathways in the regulation of collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by human skin fibroblasts. Tumor necrosis factor-alpha rapidly and transiently activated ERK1/2 and JNK in fibroblasts, whereas the activation of p38 MAPK was more persistent. Inhibition of p38 activity by SB203580 markedly (by 80-90%) inhibited induction of MMP-1 and MMP-3 expression by tumor necrosis factor-alpha, whereas blocking the activation of ERK1/2 by PD98059 had no effect. Activation of endogenous ERK1/2 by adenovirus-mediated transfer of constitutively active MEK1 resulted in potent induction of MMP-1 and MMP-3 expression. Activation of endogenous or adenovirally expressed p38 alpha by adenovirally delivered constitutively active MKK3b and MKK6b also enhanced MMP-1 and MMP-3 expression and augmented the up-regulatory effect of ERK1/2 activation on the expression of these MMPs. Activation of ERK1/2 resulted in induction of c-jun, junB, and c-fos expression, whereas activation of p38 alone had no effect. In contrast, activation of p38 alpha resulted in marked stabilization of MMP-1 and MMP-3 mRNAs. These results identify two distinct and complementary signaling mechanisms mediating induction of MMP-1 and MMP-3 expression in dermal fibroblasts: AP-1-dependent transcriptional activation via the ERK1/2 pathway and AP-1-independent enhancement via p38 alpha MAPK by mRNA stabilization. It is conceivable that both modes of action play an important role in controlling the proteolytic phenotype of fibroblasts, e.g. in wound repair and tumor invasion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app