RESEARCH SUPPORT, NON-U.S. GOV'T
[Detection of fibroblast growth factor receptor 3 gene mutation at nucleotide 1138 site in congenita achondroplasia patients].
OBJECTIVE: [corrected] To investigate the mutation at the transmembrane domain of fibroblast growth factor receptor 3 (FGFR3) nucleotide 1138 site for identifying the major pathologic mechanism of achondroplasia (ACH) and to evaluate the efficacy of denaturing gradient gel electrophoresis(DGGE) method for screening the point mutations.
METHODS: The genomic DNA from 17 clinically diagnosed ACH patients where analysed by polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP) with Sfc I and Msp I restriction endonucleases and by PCR-DGGE technique for screening.
RESULTS: G to A transition mutation at nucleotide 1138 was detected in 14/17 of the ACH patients as heterozygotes by PCR-RFLP with Sfc I digestion. No 1138 G to C transition was detected by Msp I digestion. All of the 14 samples with G to A mutation were also found to be positive for point mutation by PCR-DGGE. No mutation was detected in 3 negative samples by PCR-RFLP, implying that there was actually no point mutation in this amplified region.
CONCLUSION: Nucleotide 1138 in transmembrane domain of FGFR3 gene is the hot point for mutation in ACH and hence its major pathologic cause. PCR-DGGE is a sensitive and reliable technique for point mutation screening, especially for the heterozygotes.
METHODS: The genomic DNA from 17 clinically diagnosed ACH patients where analysed by polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP) with Sfc I and Msp I restriction endonucleases and by PCR-DGGE technique for screening.
RESULTS: G to A transition mutation at nucleotide 1138 was detected in 14/17 of the ACH patients as heterozygotes by PCR-RFLP with Sfc I digestion. No 1138 G to C transition was detected by Msp I digestion. All of the 14 samples with G to A mutation were also found to be positive for point mutation by PCR-DGGE. No mutation was detected in 3 negative samples by PCR-RFLP, implying that there was actually no point mutation in this amplified region.
CONCLUSION: Nucleotide 1138 in transmembrane domain of FGFR3 gene is the hot point for mutation in ACH and hence its major pathologic cause. PCR-DGGE is a sensitive and reliable technique for point mutation screening, especially for the heterozygotes.
Full text links
Trending Papers
Role of Iron Deficiency in Heart Failure-Clinical and Treatment Approach: An Overview.Diagnostics 2023 January 14
Systemic complications of rheumatoid arthritis: Focus on pathogenesis and treatment.Frontiers in Immunology 2022
Long COVID: major findings, mechanisms and recommendations.Nature Reviews. Microbiology 2023 January 14
2023 American Society of Anesthesiologists Practice Guidelines for Preoperative Fasting: Carbohydrate-containing Clear Liquids with or without Protein, Chewing Gum, and Pediatric Fasting Duration-A Modular Update of the 2017 American Society of Anesthesiologists Practice Guidelines for Preoperative Fasting.Anesthesiology 2023 Februrary 2
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app