IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Antioxidant improves smooth muscle sarco/endoplasmic reticulum Ca(2+)-ATPase function and lowers tyrosine nitration in hypercholesterolemia and improves nitric oxide-induced relaxation.

Antioxidants improve endothelial function in hypercholesterolemia (HC); however, whether this includes improvement of the vascular smooth muscle response to NO is unknown. NO relaxes arteries, in part, by stimulating Ca(2+) uptake via sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) in aortic smooth muscle, and HC impairs SERCA function and the response to NO. HC induces oxidative stress, which could impair SERCA function. To study the effect of antioxidants, which are known to improve endothelium-dependent relaxation in HC, smooth muscle SERCA activity and NO-induced relaxation were studied in rabbits fed normal chow or a 0.5% cholesterol diet for 13 weeks. The antioxidant t-butylhydroxytoluene (BHT, 1%) was mixed with the HC diet in the last 3 weeks. HC impaired acetylcholine- and NO-induced relaxation, and these were restored by BHT. After inhibiting SERCA with thapsigargin, no difference existed in NO-induced relaxation among the three groups. Reduced aortic SERCA activity in HC was restored by BHT without changing SERCA protein expression. 3-Nitrotyrosine was notably increased in the media of the HC aorta, where it colocalized with SERCA. Tyrosine-nitrated SERCA protein was immunoprecipitated in the aortas of HC rabbits, where it was decreased by BHT, and it was also detected in the aortas of atherosclerotic humans. Thus, the antioxidant reverses impaired smooth muscle SERCA function in HC, and this is correlated with the improved relaxation to NO. These beneficial effects may depend on reducing the direct effects on SERCA of reactive oxygen species that are augmented in HC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app