Involvement of human polynucleotide kinase in double-strand break repair by non-homologous end joining

Claire Chappell, Les A Hanakahi, Feridoun Karimi-Busheri, Michael Weinfeld, Stephen C West
EMBO Journal 2002 June 3, 21 (11): 2827-32
The efficient repair of double-strand breaks (DSBs) in DNA is critical for the maintenance of genome stability. In mammalian cells, repair can occur by homologous recombination or by non-homologous end joining (NHEJ). DNA breaks caused by reactive oxygen or ionizing radiation often contain non- conventional end groups that must be processed to restore the ligatable 3'-OH and 5'-phosphate moieties which are necessary for efficient repair by NHEJ. Here, using cell-free extracts that efficiently catalyse NHEJ in vitro, we show that human polynucleotide kinase (PNK) promotes phosphate replacement at damaged termini, but only within the context of the NHEJ apparatus. Phosphorylation of terminal 5'-OH groups by PNK was blocked by depletion of the NHEJ factor XRCC4, or by an inactivating mutation in DNA-PK(cs), indicating that the DNA kinase activity in the extract is coupled with active NHEJ processes. Moreover, we find that end-joining activity can be restored to PNK-depleted extracts by addition of human PNK, but not bacteriophage T4 PNK. This work provides the first demonstration of a direct, specific role for human PNK in DSB repair.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"