Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Lung emptying in patients with acute respiratory distress syndrome: effects of positive end-expiratory pressure.

The pattern of lung emptying was studied in 10 mechanically-ventilated patients with acute respiratory distress syndrome. At four levels of positive end-expiratory pressure (PEEP) (0, 5, 10 and 15 cmH2O) tracheal (Ptr) and airway pressures (Paw), flow (V') and volume (V) were continuously recorded. Tidal volume was set between 0.5-0.6 L and V'/V curves during passive expiration were obtained. Expired volume was divided into five equal volume slices and the time constant (taue) and effective deflation compliance (Crs(eff)) of each slice was calculated by regression analysis of V/V' and postocclusion V/Ptr relationships, respectively. In each slice, the presence or absence of flow limitation was examined by comparing V'/V curves with and without decreasing Paw. For a given slice, total expiratory resistance (Rtot) (consisting of the respiratory system (Rrs), endotracheal tube (Rtube) and ventilator circuit (Rvent)) was calculated as the taue/Crs(eff) ratio. In the absence of flow limitation Rrs was obtained by subtracting Rtube and Rvent from Rtot, while in the presence of flow limitation Rrs equaled Rtot. The taue of the pure respiratory system (taue(rs)) was calculated as the product of Rrs and Crs(eff). At zero PEEP, taue(rs) increased significantly towards the end of expiration (52+/-31%) due to a significant increase in Rrs (46+/-36%). Application of PEEP significantly decreased Rrs at the end of expiration and resulted in a faster and relatively constant rate of lung emptying. In conclusion, without positive end-expiratory pressure the respiratory system in patients with acute respiratory distress syndrome deflates with a rate that progressively decreases, due to a considerable increase in expiratory resistance at low lung volumes. Application of positive end-expiratory pressure decreases the expiratory resistance, probably by preventing airway closure, and as a result modifies the pattern of lung emptying.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app