COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Modeling combined transport of water and test macromolecules across the glomerular capillary barrier: dynamics of the permselectivity.

The structure, function, and composition of the basement membrane of the glomerular capillaries of the mammalian kidney have been extensively studied, in light of the membrane's important physiological role in glomerular filtration of macromolecules and of its frequent involvement in renal diseases. An analytical mathematical model, based on the fiber matrix theory, was developed to describe the dynamics of the permselective function of the glomerular capillary barrier using mainly its hemodynamic and morphometric variables. The glomerular basement membrane was represented as a homogeneous three-dimensional meshwork of fibers of uniform length (L(f)), radius (R(f)), and packing density (N(fv)) and characterized by a local Darcy permeability (a measure of the intrinsic hydraulic conductance of the glomerular basement membrane). The model was appropriate for simulating in vivo fractional clearance data of neutral test macromolecules from an experimental rat model. We believe that the L(f) and R(f) best-fit numerical values, characterizing a glomerular basement membrane geometrical arrangement, may represent diagnostic measures for renal function in health and disease. That is, these parameters may signify new insights for the diagnosis of some human nephropathies and possibly may explain the beneficial effects and/or sites of action of some pharmacological modifiers (e.g., angiotensin converting enzyme inhibitors).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app