JOURNAL ARTICLE

Temporal changes in respiratory dynamics in mice exposed to phosgene

Alfred M Sciuto, Robyn B Lee, Jeffry S Forster, Matthew B Cascio, Diana L Clapp, Ted S Moran
Inhalation Toxicology 2002, 14 (5): 487-501
12028804
One hallmark of phosgene inhalation toxicity is the latent formation of life-threatening, noncardiogenic pulmonary edema. The purpose of this study was to investigate the effect of phosgene inhalation on respiratory dynamics over 12 h. CD-1 male mice, 25-30 g, were exposed to 32 mg/m(3) (8 ppm) phosgene for 20 min (640 mg min/m(3)) followed by a 5-min air washout. A similar group of mice was exposed to room air for 25 min. After exposure, conscious mice were placed unrestrained in a whole-body plethysmograph to determine breathing frequency (f), inspiration (Ti) and expiration (Te) times, tidal volume (TV), minute ventilation (MV), end inspiratory pause (EIP), end expiratory (EEP) pause, peak inspiratory flows (PIF), peak expiratory flows (PEF), and a measure of bronchoconstriction (Penh). All parameters were evaluated every 15 min for 12 h. Bronchoalveolar lavage fluid (BALF) protein concentration and lung wet/dry weight ratios (W/D) were also determined at 1, 4, 8, and 12 h. A treatment x time repeated-measures two-way analysis of variance (ANOVA) revealed significant differences between air and phosgene for EEP, EIP, PEF, PIF, TV, and MV, p < or =.05, across 12 h. Phosgene-exposed mice had a significantly longer mean Ti, p < or =.05, compared with air-exposed mice over time. Mice exposed to phosgene showed marked increases (approximately double) in Penh across all time points, beginning at 5 h, when compared with air-exposed mice, p < or =.05. BALF protein, an indicator of air/blood barrier integrity, and W/D were significantly higher, 10- to 12-fold, in phosgene-exposed than in air-exposed mice 4-12 h after exposure, p <or =.001 and p < or =.05, respectively. These results indicate that exposure to phosgene causes early bronchoconstriction, a temporal obstructivelike injury pattern, and disruption of mechanical rhythm largely regulated by the progressive production of pulmonary edema on airway flow. Potential therapeutic intervention may include compounds that produce bronchodilation and mechanical ventilation support if warranted.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
12028804
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"