Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Assembling amyloid fibrils from designed structures containing a significant amyloid beta-peptide fragment.

Biochemical Journal 2002 August 16
The amyloid plaque, consisting of amyloid beta-peptide (Abeta) fibrils surrounded by dystrophic neurites, is an invariable feature of Alzheimer's disease. The determination of the molecular structure of Abeta fibrils is a significant goal that may lead to the structure-based design of effective therapeutics for Alzheimer's disease. Technical challenges have thus far rendered this goal impossible. In the present study, we develop an alternative methodology. Rather than determining the structure directly, we design conformationally constrained peptides and demonstrate that only certain 'bricks' can aggregate into fibrils morphologically identical to Abeta fibrils. The designed peptides include variants of a decapeptide fragment of Abeta, previously shown to be one of the smallest peptides that (1) includes a pentapeptide sequence necessary for Abeta-Abeta binding and aggregation and (2) can form fibrils indistinguishable from those formed by full-length Abeta. The secondary structure of these bricks is monitored by CD spectroscopy, and electron microscopy is used to study the morphology of the aggregates formed. We then made various residue deletions and substitutions to determine which structural features are essential for fibril formation. From the constraints, statistical analysis of side-chain pair correlations in beta-sheets and experimental data, we deduce a detailed model of the peptide strand alignment in fibrils formed by these bricks. Our results show that the constrained decapeptide dimers rapidly form an intramolecular, antiparallel beta-sheet and polymerize into amyloid fibrils at low concentrations. We suggest that the formation of an exposed beta-sheet (e.g. an Abeta dimer formed by interaction in the decapeptide region) could be a rate-limiting step in fibril formation. A theoretical framework that explains the results is presented in parallel with the data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app