Presynaptic modulation of synaptic transmission by opioid receptor in rat subthalamic nucleus in vitro

Ke-Zhong Shen, Steven W Johnson
Journal of Physiology 2002 May 15, 541 (Pt 1): 219-30
Presynaptic modulation of synaptic transmission in rat subthalamic nucleus (STN) neurons was investigated using whole-cell patch-clamp recordings in brain slices. Evoked GABAergic inhibitory postsynaptic currents (IPSCs) were reversibly reduced by methionine enkephalin (ME) with an IC(50) value of 1.1 +/- 0.3 microM. The action of ME was mimicked by the mu-selective agonist [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO), and was partially blocked by the mu-selective antagonists naloxonazine and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP). Evoked GABA(A) IPSCs were also inhibited by the delta-selective agonist [D-Pen(2,5)]-enkephalin (DPDPE), but not by the kappa-selective agonist (+)-(5 alpha,7 alpha,8 beta)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide (U-69593) and the orphan receptor agonist orphanin FQ/nociceptin (OFQ). DPDPE-induced inhibition was completely blocked by the delta-selective antagonist N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH (ICI 174,864). ME, DAMGO and DPDPE increased the paired-pulse ratio of IPSCs. Evoked excitatory postsynaptic currents (EPSCs) were reversibly reduced by ME with an IC(50) value of 0.35 +/- 0.14 microM. Inhibition by ME was associated with an increase in the paired-pulse ratio of EPSCs. The action of ME was mimicked by DAMGO, and blocked by naloxonazine. DPDPE had little effect on evoked EPSCs. Neither U-69593 nor OFQ had any effect. ME significantly decreased the frequency of spontaneous miniature EPSCs (mEPSCs) without change in their amplitude. The action of ME was mimicked by DAMGO. DPDPE had no effect. The presynaptic voltage-dependent potassium conductance blocker 4-aminopyridine (4-AP, 100 microM) abolished the inhibitory effects of ME on evoked IPSCs and EPSCs. In contrast, 4-AP only partially blocked the actions of baclofen. These results suggest that opioids inhibit inhibitory synaptic transmission in the STN through the activation of presynaptic mu- and delta- receptors. In contrast, inhibition of excitatory synaptic inputs to the STN occurs through the activation of only mu-receptors. Both inhibitions may be mediated by blockade of voltage-dependent potassium conductance.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"