JOURNAL ARTICLE

Oxidative injury due to chronic nitric oxide synthase inhibition in rat: effect of regular exercise on the heart

Kazim Husain, Stephen R Hazelrigg
Biochimica et Biophysica Acta 2002 May 21, 1587 (1): 75-82
12009427
Many individuals with cardiac diseases undergo periodic physical conditioning with or without medication. Therefore, this study investigated the interaction of physical training and chronic nitric oxide synthase (NOS) inhibitor (nitro-L-arginine methyl ester, L-NAME) treatment on blood pressure (BP), heart rate (HR) and cardiac oxidant/antioxidant systems in rats. Fisher 344 rats were divided into four groups and treated as follows: (1) sedentary control (SC), (2) exercise training (ET) for 8 weeks, (3) L-NAME (10 mg/kg, s.c. for 8 weeks) and (4) ET+L-NAME. BP and HR were monitored with tail-cuff method. The animals were sacrificed 24 h after last treatments and hearts were isolated and analyzed. Physical conditioning significantly increased respiratory exchange ratio (RER), cardiac nitric oxide (NO) levels, NOS activity and endothelial (eNOS) and inducible (iNOS) protein expression. Training significantly enhanced cardiac glutathione (GSH) levels, GSH/GSSG ratio and up-regulation of cardiac copper/zinc-superoxide dismutase (CuZn-SOD), manganese (Mn)-SOD, catalase (CAT), glutathione peroxidase (GSH-Px) activity and protein expression. Training also caused depletion of cardiac malondialdehyde (MDA) and protein carbonyls. Chronic L-NAME administration resulted in depletion of cardiac NO level, NOS activity, eNOS, nNOS and iNOS protein expression, GSH/GSSG ratio and down-regulation of cardiac CuZn-SOD, Mn-SOD, CAT, GSH-PX, glutathione-S-transferase (GST) activity and protein expression. Chronic L-NAME administration enhanced cardiac xanthine oxidase (XO) activity, MDA levels and protein carbonyls. These biochemical changes were accompanied by increases in BP and HR after L-NAME administration. Interaction of training and NOS inhibitor treatment resulted in normalization of BP, HR and up-regulation of cardiac antioxidant defense system. The data suggest that physical conditioning attenuated the oxidative injury caused by chronic NOS inhibition by up-regulating the cardiac antioxidant defense system and lowering the BP and HR in rats.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
12009427
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"