JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK).

In the rat liver epithelial cell line Clone 9, the V(max) for glucose uptake is acutely increased by inhibition of oxidative phosphorylation and by osmotic stress. By using a membrane-impermeant photoaffinity labelling reagent together with an isoform-specific antibody, we have, for the first time, provided direct evidence for the involvement of the GLUT1 glucose transporter isoform in this response. Transport stimulation was found to be associated with enhanced accessibility of GLUT1 to its substrate and with photolabelling of formerly 'cryptic' exofacial substrate binding sites in GLUT1 molecules. The total amount of cell surface GLUT1 remained constant. The precise mechanism for this binding site 'unmasking' is unclear but appears to involve AMP-activated protein kinase: in the current study, osmotic and metabolic stresses were found to result in activation of the alpha 1 isoform of AMP-activated protein kinase, and transport stimulation could be mimicked both by 5-aminoimidazole-4-carboxamide ribonucleoside and by infection of cells with a recombinant adenovirus encoding constitutively active AMP-activated protein kinase. The effect of 5-aminoimidazole-4-carboxamide ribonucleoside, as for metabolic stress, was on the V(max) rather than on the K(m) for transport and did not affect the cell-surface concentration of GLUT1. The relevant downstream target(s) of AMP-activated protein kinase have not yet been identified, but stimulation of transport by inhibition of oxidative phosphorylation or by 5-aminoimidazole-4-carboxamide ribonucleoside was not prevented by either inhibitors of conventional and novel protein kinase C isoforms or inhibitors of nitric oxide synthase. These enzymes, which have been implicated in stress-regulated pathways in other cell types, are therefore unlikely to play a role in transport regulation by stress in Clone 9 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app