Add like
Add dislike
Add to saved papers

Developmental delay in children: assessment with proton MR spectroscopy.

BACKGROUND AND PURPOSE: The cause of developmental delay frequently is unknown, and clinicians and families can be frustrated by the lack of neuroimaging correlation especially when considering therapeutic options and long-term prognosis. We sought to determine if proton MR spectroscopy can depict abnormalities in patients with developmental delay who have structurally normal brain MR images.

METHODS: Children with developmental delay who were older than 2 years (mean age, 5.0 years; range, 3.0-10.0 years) and those aged 2 years or younger (mean age, 1.5 years; range, 0.5-2.0 years) and age-matched control subjects for each patient group underwent brain MR imaging and proton MR spectroscopy. A point-resolved spectroscopy sequence (2000/144 [TR/TE]) was used. Voxels (8 cm(3)) were placed in the subcortical white matter of the frontal and parieto-occipital lobes bilaterally. N-acetylaspartate (NAA)/creatine (Cr) and choline (Cho)/Cr ratios were assessed.

RESULTS: All patients had normal brain MR images. In children with developmental delay who were aged 2 years or younger, no statistically significant differences were detected in the NAA/Cr or Cho/Cr ratios compared with those of the control subjects. In children with developmental delay who were older than 2 years, decreases in the NAA/Cr ratio were observed in frontal (P <.001) and parieto-occipital (P <.017) subcortical white matter, and elevations in the Cho/Cr ratio were detected in the frontal (P <.24) and parieto-occipital (P <.002) subcortical white matter compared with age-matched control subjects.

CONCLUSIONS: In children with developmental delay who are older than 2 years, proton MR spectroscopy depicted abnormalities in the NAA/Cr and Cho/Cr ratios. Proton MR spectroscopy should be performed as part of the neuroimaging evaluation of developmental delay. Further studies will be needed to determine if abnormalities detected with proton MR spectroscopy can be used as a diagnostic tool and neuroimaging marker to assess long-term functional outcome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app