JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Regulation of the cardiac L-type Ca2+ channel by the actin-binding proteins alpha-actinin and dystrophin.

The actin-binding proteins dystrophin and alpha-actinin are members of a family of actin-binding proteins that may link the cytoskeleton to membrane proteins such as ion channels. Previous work demonstrated that the activity of Ca2+ channels can be regulated by agents that disrupt or stabilize the cytoskeleton. In the present study, we employed immunohistochemical and electrophysiological techniques to investigate the potential regulation of cardiac L-type Ca2+ channel activity by dystrophin and alpha-actinin in cardiac myocytes and in heterologous cells. Both actin-binding proteins were found to colocalize with the Ca2+ channel in mouse cardiac myocytes and to modulate channel function. Inactivation of the Ca2+ channel in cardiac myocytes from mice lacking dystrophin (mdx mice) was reduced compared with that in wild-type myocytes, voltage dependence of activation was shifted by 5 mV to more positive potentials, and stimulation by the beta-adrenergic pathway and the dihydropyridine agonist BAY K 8644 was increased. Furthermore, heterologous coexpression of the Ca2+ channel with muscle, but not nonmuscle, forms of alpha-actinin was also found to reduce inactivation. As might be predicted from a reduction of Ca2+ channel inactivation, a prolonging of the mouse electrocardiogram QT was observed in mdx mice. These results suggest a combined role for dystrophin and alpha-actinin in regulating the activity of the cardiac L-type Ca2+ channel and a potential mechanism for cardiac dysfunction in Duchenne and Becker muscular dystrophies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app