JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Platelet-released supernatants stimulate formation of osteoclast-like cells through a prostaglandin/RANKL-dependent mechanism.

Bone 2002 May
Platelets are activated at fracture sites or upon the insertion of implants as a consequence of vascular disruption and secrete the contents of their granules into the developing hematoma. The regeneration of injured tissue requires bone remodeling and the resorbing activity of osteoclasts. To test our hypothesis that platelets can stimulate osteoclastogenesis, we examined the effects of supernatants released from thrombin-activated platelets on osteoclast-like cell formation in murine bone marrow cultures. Histochemical analysis indicated the presence of bone-resorbing, tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. Transcripts that are characteristically expressed in native osteoclasts were increased in these cultures, as determined by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis. The inhibition of both cyclooxygenases with indomethacin, as well as the addition of the cyclooxygenase-2 (COX-2)-selective antagonist, NS398, completely blocked osteoclast-like cell formation and decreased endogenous prostaglandin E(2) production. Platelet-released supernatants stimulated the expression of receptor activator of NF-kappaB ligand (RANKL), whereas mRNA levels of osteoprotegerin (OPG) were decreased. The formation of osteoclast-like cells was prevented by recombinant OPG. Our results suggest that COX-2 activity is necessary for osteoclast-like cell formation in response to platelet-released supernatants, and that endogenously produced prostaglandin E(2) can, in turn, increase the RANKL:OPG ratio, indicating that platelets can contribute to bone remodeling by stimulation of osteoclastogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app