COMPARATIVE STUDY
JOURNAL ARTICLE

Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study

Marek Kubicki, Carl-Fredrik Westin, Stephan E Maier, Melissa Frumin, Paul G Nestor, Dean F Salisbury, Ron Kikinis, Ferenc A Jolesz, Robert W McCarley, Martha E Shenton
American Journal of Psychiatry 2002, 159 (5): 813-20
11986136

OBJECTIVE: Disruptions in connectivity between the frontal and temporal lobes may explain some of the symptoms observed in schizophrenia. Conventional magnetic resonance imaging (MRI) studies, however, have not shown compelling evidence for white matter abnormalities, because white matter fiber tracts cannot be visualized by conventional MRI. Diffusion tensor imaging is a relatively new technique that can detect subtle white matter abnormalities in vivo by assessing the degree to which directionally organized fibers have lost their normal integrity. The first three diffusion tensor imaging studies in schizophrenia showed lower anisotropic diffusion, relative to comparison subjects, in whole-brain white matter, prefrontal and temporal white matter, and the corpus callosum, respectively. Here the authors focus on fiber tracts forming temporal-frontal connections.

METHOD: Anisotropic diffusion was assessed in the uncinate fasciculus, the most prominent white matter tract connecting temporal and frontal brain regions, in 15 patients with chronic schizophrenia and 18 normal comparison subjects. A 1.5-T GE Echospeed system was used to acquire 4-mm-thick coronal line-scan diffusion tensor images. Maps of the fractional anisotropy were generated to quantify the water diffusion within the uncinate fasciculus.

RESULTS: Findings revealed a group-by-side interaction for fractional anisotropy and for uncinate fasciculus area, derived from automatic segmentation. The patients with schizophrenia showed a lack of normal left-greater-than-right asymmetry seen in the comparison subjects.

CONCLUSIONS: These findings demonstrate the importance of investigating white matter tracts in vivo in schizophrenia and support the hypothesis of a disruption in the normal pattern of connectivity between temporal and frontal brain regions in schizophrenia.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
11986136
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"