JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

In vitro evidence for complex modes of nuclear beta-catenin signaling during prostate growth and tumorigenesis.

Oncogene 2002 April 19
Understanding the molecular etiology of prostate cancer (CaP) progression is paramount for broadening current diagnostic and therapeutic modalities. Current interest in the role of wnt pathway signaling in prostate tumorigenesis was generated with the finding of beta-catenin mutation and corresponding nuclear localization in primary lesions. The recent finding of beta-catenin-induced enhancement of androgen receptor (AR) function potentially ties beta-catenin to key regulatory steps of prostate cell growth, differentiation, and transformation. By immunohistological analysis of metastatic tumors, we detected nuclear beta-catenin in 20% of lethal CaP cases, suggesting a more common role for beta-catenin in advanced disease than would be predicted by its mutation rate. Interestingly, beta-catenin nuclear localization was found to occur concomitantly with androgen-induced regrowth of normal rat prostate. These in vivo observations likely implicate beta-catenin involvement in both normal and neoplastic prostate physiology, thus prompting our interest in further characterizing modes of beta-catenin signaling in prostate cells. Extending our previous findings, we demonstrate that transient beta-catenin over-expression stimulates T cell factor (TCF) signaling in most CaP cell lines. Further, this activity is not subject to cross-regulation by phosphoinositide-3-kinase (PI3-K)/Akt signaling, a stimulatory pathway often upregulated in CaP upon PTEN inactivation. Consistent with a previous report, we observed that transient beta-catenin over-expression enhances AR-mediated transcription off two natural target gene promoters. However, we were unable to recapitulate beta-catenin-induced stimulation of ectopically expressed AR in AR-negative cells, suggesting that other AR-associated factors are required for this activity. Although LNCaP cells are capable of this mode of AR co-stimulation, stable expression of mutant beta-catenin did not alter their proliferative response to androgen. In total, our characterization of beta-catenin signaling in CaP reveals the complex nature of its activity in prostate tissue, indicating that beta-catenin potentially contributes to multiple stimulatory inputs required for disease progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app